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Even in areas as remote as the Southern Ocean, marine organisms are exposed to
contaminants that arrive through long-range atmospheric transport, such as mercury
(Hg), a highly toxic metal. In previous studies in the Southern Ocean, inter-specific
differences in Hg contamination in seabirds was generally related to their distribution
and trophic position. However, the Blue Petrel (Halobaena caerulea) was a notable
exception among small seabirds, with higher Hg levels than expected. In this study,
we compared the Hg contamination of Blue Petrels and Thin-billed Prions (Pachyptila
belcheri), which both spend the non-breeding season in polar waters, with that of
Antarctic Prions (Pachyptila desolata), which spend the winter in subtropical waters.
We collected body feathers and blood samples, representing exposure during different
time-frames. Hg concentrations in feathers, which reflect contamination throughout the
annual cycle, correlated with δ13C values, and varied with ocean basin and species. Blue
Petrels from breeding colonies in the southeast Pacific Ocean had much higher feather
Hg concentrations than expected after accounting for latitude and their low trophic
positions. Both Hg concentrations and δ15N in blood samples of Blue Petrels were
much lower at the end than the start of the breeding period, indicating a marked decline
in Hg contamination and trophic positions, and the carry-over of Hg burdens between
the wintering and breeding periods. Further parameters such myctophids as prey and
foraging in the sea-ice environment may lead to elevated Hg levels. Our study underlines
that carry-over of Hg concentrations in prey consumed in winter may determine body
Hg burdens well into the breeding season.

Keywords: distribution, mercury, petrels, stable isotopes, trophic position Q6

INTRODUCTION

Seabirds are often used as sentinels of marine pollution Q7

Q8

Q9
(Van den Steen et al., 2011; Becker et al.,

2016; Thébault et al., 2021). They are long-lived animals, feed at high trophic levels, and thus
integrate and bioaccumulate contaminants from the food webs on which they rely (Albert et al.,
2019). Often, seabirds nest in accessible breeding colonies, but roam over vast areas of ocean that
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can thus be monitored. Our knowledge of their diets and at-
sea distribution has greatly increased in the last years with the
advances in biologging methods that are now suitable for the
smallest seabird species (Quillfeldt et al., 2015), trophic tracers
such as compound-specific stable isotope analyses (Lorrain et al.,
2009; Quillfeldt and Masello, 2020), and metabarcoding from
faecal samples (Kleinschmidt et al., 2019).

Among the contaminants that increase in the marine
environment due to human activities, mercury (Hg) is a highly
toxic non-essential metal that has deleterious effects on the
behaviour, neurology, endocrinology and development of wildlife
(Scheuhammer et al., 2007; Tan et al., 2009). Released from both
natural and anthropogenic sources, Hg reaches remote polar
and sub-polar regions through long-range atmospheric transport
(Fitzgerald et al., 1998). In seabirds, Hg is incorporated from the
food and accumulates in soft tissues such as liver and muscle
(Bearhop et al., 2000a; Carravieri et al., 2014a). Birds can excrete
up to 90% of the Hg accumulated since the previous moult
in the new growing feathers and thus, feathers – which can
be sampled non-destructively – are an archive of year-round
Hg contamination (Thompson et al., 1998; Albert et al., 2019).
Birds may also show a substantial carry-over of Hg among
seasons, and slow changes in Hg over time. For example, Double-
Crested Cormorants (Phalacrocorax auritus) and Caspian Terns
(Hydroprogne caspia) with high Hg exposure in winter still had
elevated blood Hg values in summer (Lavoie et al., 2014).

Among seabirds, species with high trophic position in
marine food webs have elevated Hg concentrations due to
the biomagnification of methylmercury (MeHg), the most
bioavailable form of Hg in marine ecosystems (Seco et al., 2021).
This pattern has been shown in the seabird community of the
subantarctic Kerguelen Islands (Blévin et al., 2013; Carravieri
et al., 2014a). In particular, species feeding in colder waters to
the south had lower Hg concentrations than species feeding
in northern, warmer waters. At the scale of the Southern
Hemisphere, such a pattern (higher Hg concentrations in
birds feeding in subtropical and subantarctic waters) has been
confirmed for diverse species, including penguins, skuas, and
albatrosses (Carravieri et al., 2014b, 2016, 2017, 2020; Cherel
et al., 2018). However, the Blue Petrel (Halobaena caerulea)
seems to be a marked exception to this general pattern, as Hg
concentrations in tissues is one order of magnitude higher than
in other species of small petrels (Bocher et al., 2003).

The Blue Petrel is a similar size (∼200 g) to Prions, Pachyptila
spp. The largest breeding populations are at Diego Ramírez
Islands, Chile in the southeast Pacific Ocean (>2 million
individuals or ∼1.35 million pairs; Schlatter and Riveros, 1997;
Lawton et al., 2006), Kerguelen Islands in the southern Indian
Ocean (100,000–200,000 pairs; Weimerskirch et al., 1989) and
Marion Island in the Indian Ocean (110,000–180,000 pairs; Dilley
et al., 2017). Muscle tissue sampled from Blue Petrels breeding
at Kerguelen Islands contains far higher Hg concentrations
than expected, given the relatively low Hg levels in epipelagic
fish and crustaceans in the same region (Bocher et al., 2003).
Proposed explanations include the relative longevity of Blue
Petrels (up to 20 years) and thus, Hg bioaccumulation over
the long-term, and from their consumption of mesopelagic fish

(Cherel et al., 2002b), which contain high Hg concentrations
(Bustamante et al., 2003; Cipro et al., 2018; Seco et al., 2020).
Blue Petrels at Marion Island in the southern Indian Ocean
showed the highest feather Hg concentrations reported for
the species so far (Becker et al., 2016). At South Georgia,
studies reported either relatively high Hg concentrations in
feathers of Blue Petrels (Becker et al., 2002) or Hg levels
in a similar range to Antarctic prions and diving petrels
(Anderson et al., 2009).

Although Hg in Southern Ocean seabirds has received
considerable attention (Anderson et al., 2009; Becker et al.,
2016; Blevin et al., 2017 Q12; Carravieri et al., 2020), the influence
of sea ice on Hg dynamics has not yet been explored. Recent
studies identified bacteria of the genus Nitrospina as a potential
Hg methylator within sea ice and brine, and proposed that
Antarctic waters associated with sea ice can harbour a microbial
source of MeHg in the Southern Ocean (Gionfriddo et al.,
2016). Thus, total Hg (i.e., inorganic Hg and MeHg) and
methylated Hg (MeHg) concentrations are elevated in these
zones, related to high atmospheric Hg deposition and subsequent
in situ methylation (Gionfriddo et al., 2016). A study of the
Hg species distribution suggested that the Southern Ocean
Hg cycle is characterized by a net atmospheric Hg deposition
on surface waters near the ice edge, and Hg enrichment in
brine during sea-ice formation (Cossa et al., 2011). Studies
in coastal Antarctica have shown greatly enhanced total Hg
concentrations in surface snow at the sea-ice edge adjacent to the
freezing ocean surface (McMurdo/Ross Sea region: Brooks et al.,
2008; Casey station/East Antarctic: Cossa et al., 2011). The Hg
concentrations found in fast ice near Casey station were three
orders of magnitude above the concentrations in surface water
in the Southern Ocean (Cossa et al., 2011). A seasonal study of
elemental and total Hg concentrations in the Antarctic sea-ice
environment (Nerentorp Mastromonaco et al., 2016) found that
the concentration of total Hg in sea ice halved from winter to
spring (average 9.7 ng/l to 4.7 ng/l). A recent analysis has related
high winter Hg concentrations to the frequency of katabatic
winds, bringing Hg from the Antarctic ice sheet to coastal waters
(Yu et al., 2021).

In the present study, we compared Hg concentrations in
blood and feathers of Blue Petrels, Antarctic Prions (Pachyptila
desolata), and Thin-billed Prions (P. belcheri), each at their largest
colonies in widely separated oceans. Of the three species, Blue
Petrels spend the non-breeding season at the most southerly
latitudes (Quillfeldt et al., 2013, 2015; Navarro et al., 2015), and
have disproportionately high Hg values (Bocher et al., 2003). We
therefore used tracking data to examine if exposure to sea ice may
play a part in explaining variability in Hg concentrations. We
used stable isotope analyses to determine trophic positions and
distributions (water mass) used by each species. In the Southern
Ocean, δ13C values in seabird tissues correspond to the location
of their foraging habitats (Phillips et al., 2009; Jaeger et al., 2010;
Quillfeldt et al., 2010b) and δ15N values increase with trophic
position (Cherel et al., 2010). As novel questions, we aimed to
test (1) if foraging close to sea-ice-covered polar waters results
in higher exposure to Hg, and (2) if there is carry-over of Hg
between wintering and breeding grounds.
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FIGURE 1 | DistributionQ10 of

Q11

Blue Petrels, Thin-billed Prions, and Antarctic Prions during primary moult (i.e., the core moult area). Colony sites: Diego Ramirez (DR),
South Georgia (SG), Falkland Islands (Malvinas) (FLK), and Kerguelen (KER). Blue Petrels moulting in February between 71◦S, 119◦W and 67◦S, 78◦W are most likely
birds from the large Diego Ramirez colony (Ryan et al., 2020). Moult takes place around the time of the minimum sea-ice extent (February–April) in Blue Petrels and
Thin-billed Prions, and during August–October in Antarctic Prions.

MATERIALS AND METHODS

Study Species
Blue Petrels,Q13 Thin-billed Prions, and Antarctic Prions have wide
distributions in the Southern Ocean. We sampled breeding
populations in the south-west Atlantic Ocean (Falkland Islands
for Thin-billed Prions; South Georgia for Blue Petrels and
Antarctic Prions) and in the Indian Ocean (Kerguelen Islands,
all three species) (Figure 1). In addition, a population
of Blue Petrels was sampled on Diego Ramírez Islands,
Chile, southeast Pacific Ocean. In total, we sampled seven
populations (Figure 1). Thin-billed Prions breed mainly on
the Falkland and Kerguelen Islands. New Island, in the
Falkland Islands, is the most important known breeding
site for Thin-billed Prions with an estimated two million
breeding pairs. South Georgia and Kerguelen are the most
important breeding sites (with populations > 1 million) of
Antarctic Prions.

These three petrel species migrate away from their breeding
grounds during the non-breeding season, where they segregate
latitudinally (Navarro et al., 2015; Quillfeldt et al., 2015).
Antarctic Prions migrate to subtropical waters, and Thin-billed
Prions and Blue Petrels moult in polar waters (Quillfeldt et al.,
2013, 2015; Navarro et al., 2015). The species also show breeding
allochrony, with Blue Petrels arriving at colonies in September,
Thin-billed Prions in October and Antarctic Prions in November

to early December (Quillfeldt et al., 2020). After several days of
pair formation, the birds leave on a pre-laying exodus, and return
ready for egg-laying and incubation, with the mean start of the
first trip by the female in incubation at Kerguelen of 28 October
(Blue Petrel), 19 November (Thin-billed Prion) and 26 December
(Antarctic Prion) (Quillfeldt et al., 2020).

Differences in habitat use in the breeding season are less
pronounced than in winter, and diets largely overlap. The three
species are zooplanktivorous, with a preference for crustaceans
(Prince, 1980; Cherel et al., 2002a,b; Quillfeldt et al., 2010a), and
forage on the surface or up to depths of 5–7 m (Chastel and Bried,
1996; Cherel et al., 2002a; Navarro et al., 2013).

Study Sites and Seasons
Adult Blue Petrels and the two species of Prions were trapped
either at the burrow or by mist net. Fieldwork at Kerguelen was
carried out in colonies of Thin-billed Prions and Blue Petrels
at Île Mayès (49◦28′S, 69◦57′E) during incubation, late chick-
rearing or post-moult periods (when Blue Petrels return to
clean out their burrows) of five breeding seasons (Tables 1, 2).
Sampling in 2010/11 was carried out as part of the POLARTOP
project (Carravieri et al., 2014a,b) and in 2011/12, blood and
feather samples were collected during the deployment and
retrieval of geolocator-immersion loggers (Quillfeldt et al., 2015).
Antarctic Prions were sampled at Île Verte (49◦30′S, 70◦02′E;
n = 10) in 2011/12. Mist netting of Blue Petrels was carried

Frontiers in Ecology and Evolution | www.frontiersin.org 3 xx 2022 | Volume 10 | Article 915199

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-915199 June 11, 2022 Time: 17:28 # 4

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Quillfeldt et al. Mercury Accumulation in Small Petrels

TABLE 1 | Summary of stable isotope and mercury data of Blue Petrels (mean ± standard deviation).

POLARTOP
Kerguelen

2010/11

GLS deployments
Kerguelen

2011/12

GLS recoveries
Kerguelen

2012/13
Kerguelen

2018/19
Diego Ramirez

2010/11
South Georgia

2010/11

GLS recoveries
South Georgia

2011/12

Body feathers

N 10 Not sampled 17 20 30 (16 for Hg) 20 8

δ13C (h) −24.4 ± 0.7 −24.9 ± 0.5 −25.7 ± 1.1 −23.6 ± 1.3 −25.0 ± 1.3 −24.8 ± 0.8

δ15N (h) 9.0 ± 0.4 8.6 ± 0.5 8.3 ± 0.5 10.3 ± 0.9 8.8 ± 0.9 9.1 ± 0.7

TPCSIA 3.21 ± 0.04 3.79 ± 0.11

TPLM 3.27 ± 0.05 3.43 ± 0.07

Hg (µg/g dw) 1.44 ± 0.42 2.09 ± 1.65 1.68 ± 0.96 4.42 ± 2.72 1.69 ± 1.51 1.09 ± 0.72

Blood (early
breeding season)

N (sample time) 10 (September) Not sampled 17 (November) 20 (November) Not sampled 16 (20 November–4
December)

Not sampled

δ13C (h) −22.4 ± 1.2 −24.0 ± 0.9 −24.1 ± 0.9 −23.4 ± 0.6

δ15N (h) 10.3 ± 0.8 9.3 ± 0.5 9.2 ± 0.6 9.7 ± 0.4

TPCSIA – – 3.55 ± 0.24 –

Hg (µg/g dw) 6.00 ± 2.78 4.58 ± 1.83 4.01 ± 1.63 2.76 ± 1.81

Blood (late
breeding season)

N 11 (February) 20 (29 December–6
January)

Not sampled 20 (April) 24 (6 December–26
January)

Not sampled Not sampled

δ13C (h) −24.3 ± 0.5 −23.9 ± 1.1 −27.0 ± 0.3 −24.6 ± 0.2

δ15N (h) 8.0 ± 0.3 9.1 ± 0.3 7.9 ± 0.4 8.8 ± 0.5

TPCSIA – – – 3.43 ± 0.06

Hg (µg/g dw) 2.06 ± 0.74 2.43 ± 1.05 0.49 ± 0.15 2.92 ± 0.74

Early breeding season: arrival (September) to incubation (November), late breeding season: chick-feeding (December–February) to post-moult return (April).

TABLE 2 | Summary of stable isotope and mercury data of Thin-billed Prions (mean ± standard deviation).

New Island
Falkland/Malvinas

2006/07
Falkland/Malvinas

2017/18

POLARTOP
Kerguelen

2010/11

GLS recoveries
Kerguelen

2012/13
Kerguelen

2018/19

Feathers (moult)

N 20 20 12 23 14

δ13C (h) −22.1 ± 2.8 −21.6 ± 1.8 −24.0 ± 1.0 −23.5 ± 1.0 −25.3 ± 0.9

δ15N (h) 10.5 ± 3.4 10.7 ± 1.94 9.1 ± 0.3 8.7 ± 0.3 8.2 ± 0.4

TPCSIA 3.53 ± 0.06 3.39 ± 0.10 3.34 ± 0.07

TPLM 3.51 ± 0.27 3.50 ± 0.14 3.27 ± 0.03

Hg (µg/g dw) 0.76 ± 0.61 1.13 ± 0.74 0.90 ± 0.29 1.62 ± 0.67 1.04 ± 0.52

Blood (early breeding
season)

N (month) 12 20 10 (October) 23 (26 November–3
December 2012)

14 (November)

δ13C (h) −18.8 ± 0.8 −19.8 ± 0.5 −23.4 ± 1.5 −23.3 ± 1.2 −23.8 ± 0.5

δ15N (h) 12.4 ± 1.2 11.2 ± 1.1 9.3 ± 0.6 8.9 ± 0.3 8.2 ± 0.3

TPCSIA 3.60 ± 0.07 3.56 ± 0.08

Hg (µg/g dw) 0.80 ± 0.25 0.99 ± 0.25 1.46 ± 0.39 1.29 ± 0.39 1.31 ± 0.31

Blood (late breeding
season)

N 6 20 12 (February) Not sampled 3 (April)

δ13C (h) −19.5 ± 1.9 −17.9 ± 1.1 −24.0 ± 0.6 −25.1 ± 0.2

δ15N (h) 12.1 ± 1.3 11.9 ± 0.9 8.0 ± 0.2 7.5 ± 0.2

TPCSIA 3.47 ± 0.05

Hg (µg/g dw) 0.61 ± 0.24 0.63 ± 0.15 0.73 ± 0.20 0.72 ± 0.12

Early breeding season: arrival (October) to incubation (December), late breeding season: chick-feeding (January–April).
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out at Isla Gonzalo, Diego Ramírez Islands (56◦29′S, 68◦44′W)
in December 2010 to January 2011. Thin-billed Prions were
sampled at New Island, Falkland/Malvinas Islands (51◦43′S,
61◦18′W) in 2006/07 and 2017/18. Blue Petrels and Antarctic
Prions were sampled at Bird Island, South Georgia (54◦00′S,
38◦03′W) in burrows during the austral summer 2010/11, when
the incubation period overlaps between the two species, and
feathers were also collected from Blue Petrels when geolocators
were retrieved in austral summer 2011/12.

Sample Collection
We sampled two different tissue types, body feathers and blood.
Body feathers, moulted annually, represent Hg accumulated over
the annual cycle (Albert et al., 2019). To assess seasonal changes
in Hg exposure, we sampled blood at different stages in the
breeding season as blood reflects the contamination for the 1−2
previous months (half-life of 30 days in Great Skuas Stercorarius
skua: Bearhop et al., 2000Q15 ; 40–65 days in Cory’s shearwaters
Calonectris borealis: Monteiro and Furness, 2001). For sample
times and sizes see Tables 1–3.

Feather samples (body feathers) were stored in individual
Ziploc bags. Antarctic Prions moult their primaries towards
the end of the non-breeding season, and Blue Petrels and
Thin-billed Prions directly after the breeding season (Cherel
et al., 2016). Less is known about body feather moult,
but this is thought to occur over a longer period. Blue
Petrels collected in January (i.e., likely non-breeders or failed
breeders) had extensive body moult coinciding with primary
and secondary feather moult (Bierman and Voous, 1950), but
very few Blue Petrels moult body feathers in winter (Brown
et al., 1986). Blue Petrels return to the colony after their

moult, mostly in May (Brooke et al., 2004; own observations
from tracking data).

Feathers were cleaned in a chloroform:methanol solution (2:1,
v/v) in an ultrasonic bath and rinsed two times in methanol. After
48 h drying at 45◦C in an oven, they were cut into tiny fragments
with stainless steel scissors. Blood (0.2–0.4 ml) was sampled
by puncture of the wing vein and collected using heparinized
capillaries, or syringes. Blood was stored in ethanol (Diego
Ramírez, Kerguelen 2012/13), or separated by centrifugation, and
the pellet of red blood cells was frozen (Kerguelen 2010/11 and
2018/19, Falkland Islands, and South Georgia). Both whole blood
and blood cells were freeze-dried and ground to powder for Hg
and stable isotope analyses. As Hg from whole blood is mainly
found in red blood cells (>95%), it is equivalent to analyse one or
the other, when referring to dry mass.

The half-life of isotope turnover for avian red blood cells was
29.8 days in crows (Corvus brachyrhynchos) (Hobson and Clark,
1993). For this, blood samples collected from petrels therefore
likely represented the diet ingested ca. 2–4 weeks before sampling.
After return from the wintering areas, stable isotope ratios in
blood quite quickly reach values characteristic of the summer
habitat and diet (Cherel et al., 2014; Lavoie et al., 2014). In
contrast, there can be substantial carry-over of Hg among seasons
and slow changes in the body pool of Hg over time, especially
for individuals with high Hg exposure in winter (Lavoie et al.,
2014). This suggests a slow depuration rate and storage in internal
tissues, such that levels in the blood reflect both recent and past
exposure. Renal excretion of MeHg is low and bile excretion
is followed by intestinal reabsorption, thus retaining Hg in the
organism. Hence, Hg values in blood at a given time may be
influenced by previous exposure at distant locations.

TABLE 3 | Summary of stable isotope and mercury data of Antarctic Prions (mean ± standard deviation).

Antarctic prion - GLS recoveries
Kerguelen

2012/13

Antarctic prion
South Georgia

2010/11

Antarctic prion - GLS recoveries
South Georgia

2011/12

Feathers (moult)

N 10 20 6

δ13C (h) −18.8 ± 0.9 −18.7 ± 1.1 −20.9 ± 1.0

δ15N (h) 9.9 ± 0.8 10.5 ± 1.8 10.1 ± 1.0

TPLM

Hg (µg/g dw) 2.39 ± 0.58 1.68 ± 0.75 1.49 ± 0.44

Blood (early breeding season)

N (month) 10 (January) 15 (December–January) Not sampled

δ13C (h) −23.8 ± 0.8 −21.8 ± 0.7

δ15N (h) 8.2 ± 02 8.2 ± 0.4

TPLM

Hg (µg/g dw) 0.71 ± 0.18 0.39 ± 0.13

Blood (late breeding season)

N Not sampled 2 (February) Not sampled

δ13C (h) −21.6 ± 1.8

δ15N (h) 8.9 ± 0.3

TPLM

Hg (µg/g dw) 0.34 ± 0.20

Early breeding season: incubation (December–January), late breeding season: chick-feeding (February).
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Mercury Analyses
Mercury concentrations were determined on aliquots with an
Advanced Mercury Analyser spectrophotometer Altec AMA-
254 [aliquots: blood ∼2 mg dry weight (dw), feathers ∼1 mg
dw] as described in Bustamante et al. (2006). AMA measures
total Hg but bird blood and feathers contain virtually 100%
methylmercury (Thompson and Furness, 1989; Renedo et al.,
2017; Manceau et al., 2021). Measurements were repeated two
to three times for each sample, until the relative standard
deviation (RSD) was <10%. For each set of samples, accuracy
and reproducibility of the results were tested by preparing
analytical blanks and performing replicate measurements of
certified reference materials (TORT-2: lobster hepatopancreas,
certified concentration: 0.27 ± 0.06 µg/g dw; DOLT-5: dogfish
liver, certified concentration: 0.44 ± 0.18 µg/g dw; National
Research Council of Canada). Measured Hg concentrations for
the certified reference materials were: 0.26 ± 0.02 µg/g dw
(n = 18) and 0.42± 0.01 µg/g dw (n = 15) for TORT-2 and DOLT-
5, respectively, corresponding to a recovery rate of 96 ± 2% for
TORT-2 and 96 ± 1% for DOLT-5. The limit of detection (LOD)
was 0.005 µg/g dw. Hg concentrations are expressed in µg/g dw.

Bulk Stable Isotope Analyses
To perform bulk stable isotope analyses, 0.2–0.4 mg of sample
was weighed into tin cups. δ13C and δ15N values were determined
with a continuous-flow mass spectrometer (Thermo Scientific
Delta V Advantage) coupled to an elemental analyser (Thermo
Scientific Flash EA 1112). Results are expressed in parts per
thousand (h) in the usual δ notation, relative to Vienna Pee Dee
Belemnite for δ13C and atmospheric N2 for δ15N, following the
formula:

δ13C or δ15N = (
Rsample

Rstandard
− 1)× 103

where R is 13C/12C or 15N/14N, respectively. Measurements of
internal laboratory standards were conducted using acetanilide
and peptone and indicated an experimental precision of±0.15h
for both elements.

Compound-Specific Isotope Analyses of
Amino Acids
Compound-specific isotope analyses of amino acids (CSIA-AA)
data can provide a good estimate of the trophic position of
marine organisms even from temporally and spatially variable
environments. CSIA-AA were performed at the UC Davis
Stable Isotope facility (United States), as described previously
(Quillfeldt and Masello, 2020). Trophic positions (TP) were
calculated from the δ15N values of glutamic acid (Glx) and
phenylalanine (Phe), using a stepwise trophic discrimination
factor (multi-TDFGlx−Phe, for detailed discussion, see Quillfeldt
and Masello, 2020), with the following equations:

TP[feathers] = 2+
Glx− Phe− 3.5 h− 3.4 h

6.2 h

TP[blood cells] = 2+
Glx− Phe− 4.0 h− 3.4 h

6.2 h

Due to high analytical costs, only small sample sizes were
analysed with CSIA-AA. For Blue Petrels (Table 1), we analysed
10 blood samples and 10 feathers (five from Kerguelen and
five from Diego Ramírez, respectively). For Thin-billed Prions
(Table 2), we included 20 blood samples (5 from Kerguelen and
15 from New Island: 5 each in 2 years and 2 parts of the season),
and 21 feathers (5 from Kerguelen and 16 from New Island: 5
from 2017 to 2018, and 11 from 2006 to 2007).

Calculation of Trophic Positions
Trophic positions were calculated as described in Thébault et al.
(2021). In the Southern Hemisphere, a latitudinal enrichment in
δ15N baseline values occurs from Antarctic to subtropical waters
(Jaeger et al., 2010; Quillfeldt et al., 2010b). To correct for this
latitudinal effect, we calculated the trophic positions of the birds
by applying linear regression models to the relationship between
TPCSIA and bulk stable isotope values (δ13C and δ15N). Trophic
positions calculated with linear models are referred as TPLM.

Linear regression models were used to test relationships
between TPCSIA and bulk stable isotope values (δ13C and δ15N).
Models were applied separately for blood samples, both reflecting
short-term food intake and with similar TDF – 4.0h (Quillfeldt
and Masello, 2020) and 4.1h (Hebert et al., 2016), respectively,
and feather samples (which reflect trophic ecology at the time of
moult). For feathers, the linear regression model was statistically
significant (R2 = 0.58, F28,2 = 19.1, p < 0.001), and the following
equation was used to calculate trophic positions from bulk stable
isotope values:

TPLM
[
feathers, N = 31

]
= 3.476+ 0.026× δ13C + 0.055× δ15N

However, the linear regression model was not statistically
significant for blood TPCSIA values (R2 = 0.05, F22,2 = 0.5,
p = 0.596). Thus, we did not calculate trophic positions from bulk
stable isotope values for blood.

Distribution, Moult and Sea Ice
Concentrations
Moulting times and distributions were determined using three
steps, as described previously in Cherel et al. (2016): using the
information recorded by the geolocator-immersion loggers (i)
extraction of daily data on activity using the ACTAVE tool
(Mattern et al., 2015), (ii) fitting a Generalized Additive Model
(GAM) to the variable ‘on-water’ (i.e., the total time spent on
water) separately for each individual, and (iii) calculating the
dates when the fitted ‘on-water’ value exceeded 75% of the
maximum (which indicates the core moult area; Cherel et al.,
2016).

We defined habitat zones following Cherel et al. (2018), based
on feather δ13C isoscapes (Jaeger et al., 2010), as Subtropical Zone
(STZ): δ13C >−18.3h, Subantarctic Zone (SAZ): δ13C values of
−21.2 to −18.3h, and Antarctic Zone (AZ): δ13C < −21.2h.
Likewise, in blood, habitat was derived from δ13C as Subtropical
Zone (STZ): δ13C > −20.1h, Subantarctic Zone (SAZ):
δ13C values of −22.9 to −20.1h, and Antarctic Zone (AZ):
δ13C <−22.9h (Jaeger et al., 2010).
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The populations were assigned to the ocean basin where they
spend most of their annual cycle. Thus, although Blue Petrels
from Kerguelen moult in the Atlantic, and Blue Petrels from
South Georgia spend 2 months in winter in the Pacific, they were
assigned to the ocean basin of their breeding colony, i.e., Indian
and Atlantic Ocean, respectively.

Using geolocator data, we calculated an index of sea-ice
concentrations used by tracked birds, obtained through the
Environmental Data Automated Track Annotation System (Env-
DATA) on Movebank1. Sea-ice values (ECMWF Interim Full
Daily SFC Sea Ice Cover, scale 0–1) for each location were
summarized by individual and month. From these, we calculated
the maximum value and mean annual sea-ice concentration. The
maximum values were reached in the weeks before the breeding
season, and we tested for a relationship with Hg values in blood
collected in the early breeding season. An exception was the
Thin-billed Prions from New Island, where the sea-ice maximum
was reached earlier in the winter; however, this population was
excluded from analyses as Hg was not measured in feathers and
blood of tracked animals. As body feathers integrate the Hg
contamination over the year, we tested for a relationship with the
mean annual sea-ice values of tracked birds during the breeding
and non-breeding season.

Data Analyses
Data were analysed in R4.1.0., and visualized in R and in ArcGIS
10.2.2. Normality was tested using Shapiro tests and QQ plots.
Stable isotopes and Hg values were not normally distributed, and
univariate statistics were carried out using non-parametric tests,
while the data were successfully transformed using transform
Tukey in the R package “rcompanion” before carrying out
multivariate statistics such as linear models. A comparison of the
model outputs did not show any large differences between models
using transformed and untransformed data. Thus, effect plots are
given from models of untransformed data to enhance readability,
i.e., showing the actual scale of the data.

As Hg concentrations differed among the species and did
not show a linear relationship with stable isotope values, we
ran GAMs in the R package “mgcv”, separately for the species.
As proxies for the trophic position, we included either δ15N or
the estimated trophic position based on the linear regression of
feather δ15N and δ13C values (TPLM). As proxies for distribution,
we included either δ13C or the distribution zone. We checked
all GAMs for model convergence and random distribution of
residuals, and reported statistics (effective degrees of freedom and
p-values) for the GAMs run separately for each parameter.

We further ran a model selection separately for
each species with the dredge function in the R
package MuMIn on the full models for feathers:
gam(THg.feathers ∼ s(TP_est) + s(δ13C.feathers) +

s(δ15N.feathers) + habitat + ocean), and for blood:
gam(THg.blood ∼ s(δ13C.blood) + s(δ15N.blood) + season +
habitat + ocean). For the selected best models, we report the
coefficients and, as a measure of effect size, calculated eta
squared values (η2) obtained with the EtaSq function in the R

1Q16 movebank.org

package “DescTools”. Unless indicated otherwise, mean values
are given± SD.

RESULTS

Year-Round Distribution and Moulting
Sites
The three species and their different populations had distinct
moulting sites and winter distributions (Figures 1, 2). Blue
Petrels and Thin-billed Prions moulted south of the Antarctic
Polar Front, and Antarctic Prions to its north. In all three species,
birds from Kerguelen started the core period of moult later
than birds from the south-west Atlantic colonies (mean 12 days,
11 days, and 28 days later in Blue Petrels, Thin-billed Prions,
and Antarctic Prions, respectively: Supplementary Figure 1 and
Supplementary Table 1). Blue Petrels from South Georgia and
Kerguelen moulted in the Southern Ocean between 20◦W and
30◦E, overlapping between 20◦W and 10◦E (Figure 1). Based
on the immersion data, the core moult phase took place on
average between early February and late March in Blue Petrels
from South Georgia, and between mid-February and early April
in Blue Petrels from Kerguelen (Supplementary Figure 1 and
Supplementary Table 1). The latitudes during the breeding
and moulting period differed only slightly for Blue Petrels
from Kerguelen and South Georgia (Supplementary Figure 2),
whereas ship-based observations indicate that Blue Petrels from
Diego Ramírez moult at higher latitudes (c. 70◦S; Ryan et al.,
2020). Blue Petrels from Kerguelen and South Georgia spent the
mid-winter mostly south of 55◦S (Figure 2 and Supplementary
Figure 2). Although both populations moulted in the Atlantic
Ocean, subsequent longitudinal movements were in opposite
directions; birds from Kerguelen returned to the Indian Ocean,
whereas those from South Georgia entered the Pacific Ocean in
mid-winter (July–August) (Supplementary Figure 2).

The moulting areas of Thin-billed Prions were southeast
and southwest of the Falkland Islands, and most birds from
the Falklands and Kerguelen moulted in waters between 25◦W
and 30◦E, overlapping between 0◦ and 30◦E (Figure 1). The
core moult period was between late February and early April
in Thin-billed Prions from the Falkland Islands, and between
early March and late April in Thin-billed Prions from Kerguelen
(Supplementary Figure 1 and Supplementary Table 1). The
year-round latitudinal distribution was very similar for Thin-
billed Prions from both colonies (Supplementary Figure 3),
whereas longitudinal movements were in opposite directions
(Supplementary Figure 3). Thin-billed Prions spent the mid-
winter mostly between 45◦S and 55◦S, intermediate between the
other two species (Figure 2 and Supplementary Figure 3).

Antarctic Prions generally moulted north of the Antarctic
Polar Front, and the moult areas of the birds from South Georgia
and Kerguelen did not overlap (Figure 1). The core moult took
place in the pre-breeding period, between late July and mid-
October in Antarctic Prions from South Georgia, and between
early August and late October in Antarctic Prions from Kerguelen
(Supplementary Figure 1 and Supplementary Table 1). The
latitudes during the breeding period were slightly lower, and
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FIGURE 2 | (A) Latitudinal distribution of geolocator tracked Blue Petrels, Thin-billed Prions, and Antarctic Prions during the mid-winter months (June to August),
and a mercury transect shown for comparison: (B) total mercury and (C) methyl mercury concentrations along a transect from Hobart to the Antarctic (adapted from
Figures 3 and 6 in Cossa et al., 2011). STZ, Subtropical Zone; STF, Subtropical Front; SAZ, Subantarctic Zone; SAF, Subantarctic Front; PFZ, Polar Frontal Zone;
SPF, Polar Front; AZ, Antarctic Zone; SACCF, Southern Antarctic Circumpolar Current Front; SZ, Southern Zone. Note that the position of the fronts changes
longitudinally (e.g., see Polar Front in Figure 1).

those in the winter and moult periods slightly higher, for
Antarctic Prions from Kerguelen (Figure 2 and Supplementary
Figure 4), and longitudinal movements were relatively short
in this species (Supplementary Figure 4). Antarctic Prions
spent the mid-winter mostly north of 45◦S (Figure 2 and
Supplementary Figure 4), and moulted during this time.
Antarctic Prions had longer core-moult periods (71 and 88 days)
than the other two species (43–53 days, Supplementary Table 1).

Feather Stable Isotope Values
Stable isotope values of feathers differed among species
(Tables 1–3 and Supplementary Figure 5), with the δ13C
and δ15N values increasing from Blue Petrels to Thin-billed
Prions to Antarctic Prions (Kruskal–Wallis tests; for δ13C:
χ2 = 100.2, d.f. = 2, p < 0.001, post-hoc Dunn-tests: all
p < 0.001, for δ15N: χ2 = 27.6, d.f. = 2, p < 0.001, post-hoc
Dunn-tests: Blue Petrels vs. Thin-billed Prions p = 0.292, all
other p < 0.001). Trophic positions based on the subset of
feathers analysed for CSIA from Thin-billed Prions and Blue
Petrels ranged from 3.0 to 4.3. A linear model detected no

significant difference in trophic positions between the species
(ANOVA tests; F1,26 = 1.04, p = 0.316, η2 = 0.045), whereas
differences among the oceans were significant (F2,26 = 3.82,
p = 0.035, η2 = 0.227), as were differences among feathers from
AZ and SAZ distributions (F = 46.9, p < 0.001, η2 = 0.511;
Supplementary Figure 6). Trophic positions were higher in the
Pacific population, and birds with more northerly distributions
(Figure 3 and Supplementary Figure 6).

Across species, the trophic positions determined from feathers
using linear models (TPLM), ranged from 3.2 to 3.9. Using
this larger data set, we detected moderate differences in TPLM
among species (F2,206 = 109.4, p < 0.001, η2 = 0.148) and
oceans (F2,206 = 23.2, p < 0.001, η2 = 0.184), and strong
differences among distributions (F2,206 = 263.0, p < 0.001,
η2 = 0.574). Trophic positions were elevated and highly variable
in the Pacific population, and birds with more northerly
distributions (Figure 4).

Mercury concentrations in feathers differed among species
(Kruskal–Wallis ANOVA: χ2 = 85.5, d.f. = 2, p < 0.001, post-
hoc Dunn-tests: Blue Petrels vs. Antarctic Prions p = 0.265, all
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FIGURE 3 | Mercury and trophic position in feathers of Blue Petrels, Thin-billed Prions, and Antarctic Prions (BP, TBP, and AP, respectively). The mercury (A) and
trophic position (B) values are shown for the seven populations, separately for habitat zones. Habitat was derived from δ13C following Cherel et al. (2018), as
Subtropical Zone (STZ): δ13C > –18.3h, Subantarctic Zone (SAZ): δ13C values of –21.2 to –18.3h, and Antarctic Zone (AZ): δ13C < –21.2h.

other p < 0.001). The highest mean Hg concentrations were in
Blue Petrels (2.17 ± 1.94 µg/g), followed by Antarctic Prions
(1.85± 0.75 µg/g), and Thin-billed Prions (1.14± 0.69 µg/g). Of
the seven populations, Blue Petrels from Diego Ramírez (Pacific
Ocean) had much higher Hg concentrations than predicted by
their latitudinal distribution and trophic positions (Figure 4 and
Supplementary Figures 7–9).

Generalized Additive Models (Figure 4 and Table 4) showed
a significant effect of ocean basin in all three species, with
the most elevated Hg values in the Pacific Ocean and the
lowest in the Atlantic Ocean (Figure 5). In Blue Petrels and
Thin-billed Prions, distribution (δ13C, habitat zone) as well as
trophic position (δ15N, TPLM) influenced Hg values (Figure 4
and Table 4). Model selection retained only ocean basin for
Antarctic Prions (Figure 6), but all parameters except habitat
zone for Blue Petrels and Thin-billed Prions. Coefficients for
the effect of trophic position (δ15N, TPLM) on feather Hg
indicated a strong positive relationship for Blue Petrels, a weaker,
negative relationship for Thin-billed Prions, and no influence for
Antarctic Prions (Figure 6).

Blood Stable Isotope Values
Mean blood δ13C values were lowest in Blue Petrels
(−24.4 ± 1.4h), and higher in Thin-billed Prions
(−21.4 ± 2.6h) and Antarctic Prions (−22.5 ± 1.3h,
Kruskal–Wallis ANOVA: χ2 = 90.3, d.f. = 2, p < 0.001), with
no significant difference between the last two species (post-hoc
Dunn-tests: Thin-billed vs. Antarctic Prions p = 0.474, all other
p < 0.001). Blood δ15N values differed among species, and
were lowest in Antarctic Prions (8.3 ± 0.3h), intermediate in
Blue Petrels (9.0 ± 0.8h), and highest in Thin-billed Prions
(10.1 ± 1.9h, Kruskal–Wallis ANOVA: χ2 = 38.5, d.f. = 2,
p < 0.001, post-hoc Dunn-tests: all p < 0.001).

The trophic positions based on the subset of blood samples
analysed for CSIA ranged from 3.3 to 4.0 in Thin-billed Prions

(3.5 ± 0.1) and Blue Petrels (3.5 ± 0.2). According to TPCSIA
values, the trophic positions of the two species did not differ
significantly (t-test, t =−0.7, d.f. = 11.6, p = 0.480).

Mean Hg concentrations in blood differed among species
(Kruskal–Wallis ANOVA: χ2 = 124.0, d.f. = 2, p < 0.001, post-
hoc Dunn-tests: all p < 0.001), with the highest concentrations
in Blue Petrels (2.99 ± 1.97 µg/g), then Thin-billed Prions
(0.99± 0.41 µg/g), and Antarctic Prions (0.51± 0.22 µg/g).

Species-specific GAMs showed a significant effect of
latitudinal distribution (δ13C, habitat zone) in all three species
(Table 5 and Figures 7, 8). However, this was only clearly positive
in Blue Petrels (Figures 7, 8 and Supplementary Figure 10).
The trophic position (δ15N) influenced Hg values in Blue Petrels
and Thin-billed Prions (Table 5), with a clear increase only in
Blue Petrels (Figure 8). There was a significant effect of ocean
basin for Antarctic and Thin-billed Prions (Table 5). Changes in
Hg and stable isotope values over the season were apparent in
blood of Blue Petrels and, to a lesser extent, of Thin-billed Prions
(Table 5 and Figure 7). There was a decrease of an order of
magnitude in Hg concentrations in blood of Blue Petrels, which
were sampled from arrival in September to the post-moult visit
to the colony in April (Figure 9).

For blood Hg, all parameters except δ15N and habitat were
retained in the best models for Antarctic Prions (Figure 6D).
Habitat was also excluded for Blue Petrels (Figure 6E), and in
three of four best models for Thin-billed Prions (Figure 6F).
Coefficients for the effect of trophic position (δ15N) on the feather
Hg indicated a strong positive relationship for Blue Petrels,
but values close to zero for Thin-billed Prions and Antarctic
Prions (Figure 6).

Sea-Ice Concentration
The year-round sea-ice concentration in areas used by tracked
Blue Petrels, Thin-billed Prions and Antarctic Prions (Figure 10)
from the Atlantic and Indian Ocean showed two annual peaks:
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FIGURE 4 | Species-specific Generalized Additive Model (GAM) model fits for mercury values in feathers of Antarctic Prions, Blue Petrels, and Thin-billed Prions.
Estimated smoothing curves for mercury values in feathers in relation to δ13C and trophic position (derived from δ15N and δ13C values, with 95% confidence
intervals) are given where statistically significant. For GAM statistics, see Table 4.

in April for Blue Petrels and Thin-billed Prions from Atlantic
colonies, and again in August–September for Blue Petrels. Blue
Petrels from the Indian Ocean had higher sea-ice overlap than
birds from the Atlantic in April to August (Figure 10). Blue
Petrels from Diego Ramírez have not yet been tracked (but see
distribution in Figure 1). The highest exposure to sea ice was
in September for all populations except Thin-billed Prions from
New Island (Falklands) (Figure 10).

During the period of wing moult (Supplementary Figure 1
and Supplementary Table 1), sea-ice exposure was low (<0.01)
for all populations.

Data From Individually Tracked Birds
Matching data on blood Hg and sea-ice exposure were available
for tracked individuals from four populations (Figure 11A),
and on feather Hg and sea-ice exposure for five populations

(Figure 11B). Model selection suggested that species differences
were sufficient to explain differences in blood Hg values, but
when analysing the dataset across species, a GAM suggested
that blood Hg values increased with maximum sea-ice exposure
(Figure 11A and Table 6). In contrast, mean annual sea-
ice exposure was not related to feather Hg concentrations
(Figure 11B and Table 6).

DISCUSSION

In the present study, we examined temporal and spatial effects on
stable isotope values and Hg concentrations in seven populations
of three species of small petrels in widely separated oceans. We
found evidence that higher trophic level and the distribution may
result in higher exposure to Hg. We also found a carry-over effect
of Hg exposure between wintering and breeding grounds.
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FIGURE 5 | Mercury values in feathers of Antarctic Prions, Blue Petrels, and Thin-billed Prions from different ocean basins. Boxplots showing medians, interquartile
ranges, and outliers.

TABLE 4 | Generalized Additive Model (GAM) results for feather mercury values, separately for the species, as a function of distribution (δ13C, habitat), trophic position
(δ15N, TPLM ), and ocean basin (Atlantic, Indian, or Pacific).

Species Variable Smoother edf (P) Effect size Estimate (SE) P

Blue Petrel δ13C 5.29 (P < 0.001) 0.532

(n = 90) δ15N 5.58 (P < 0.001) 0.536

TPLM 6.09 (P < 0.001) 0.592

Habitat 0.198 4.78 (1.02)
P < 0.001

Ocean 0.299 2.90 (0.51)
P < 0.001

Thin-billed Prion δ13C 2.23 (P = 0.002) 0.176

(n = 87) δ15N 1.57 (P = 0.523) 0.023

TPLM 2.35 (P = 0.029) 0.120

Habitat 0.049 0.46 (0.22)
P = 0.043

Ocean 0.050 0.31 (0.15)
P = 0.037

Antarctic Prion δ13C 1.30 (P = 0.699) 0.030

(n = 36) δ15N 1.70 (P = 0.454) 0.073

TPLM 1.62 (P = 0.562) 0.056

Habitat 0.077 0.13 (0.41)
P = 0.267

Ocean 0.205 0.75 (0.25)
P = 0.006

Habitat was derived from δ13C following Cherel et al. (2018), as Subtropical Zone (STZ): δ13C > −18.3h, Subantarctic Zone (SAZ): δ13C values of −21.2 to −18.3h,
and Antarctic Zone (AZ): δ13C < −21.2h. GAM results are reported for separate models for each parameter. Parameters with a statistically significant effect on feather
mercury values are marked bold.

Variation Among Species and
Populations in Mercury Concentrations
We found interspecific differences in Hg concentrations in
both blood and feathers, with the highest value for both
tissues in Blue Petrels. In the literature, differences among

species in Hg concentrations are mostly discussed in relation
to biomagnification processes and thus, trophic position (e.g.,
Becker et al., 2002; Anderson et al., 2009; Blévin et al., 2013;
Gatt et al., 2020). However, we here compared three small-bodied
petrel species of similar trophic positions, according to δ15N
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FIGURE 6 | Summary of GAM model selection (dredge function in the R package MuMIn) on the full models for feathers:
gam(THg.feathers ∼ s(TP_est) + s(δ13C.feathers) + s(δ15N.feathers) + habitat + ocean), and for blood:
gam(THg.blood ∼ s(δ13C.blood) + s(δ15N.blood) + season + habitat + ocean). The selected best models are outlined, and their AICs given on the right. Blue cells
note the retained parameter, with coefficients reported in white letters Q17.

values in feathers and blood samples. We found that similar
trophic position in different water masses did not lead to the same
degree of Hg biomagnification. For example, Thin-billed Prions
had the highest trophic positions relative to their distribution, but
lower Hg concentrations than Blue Petrels. This result does not
agree with the suggestion that the trophic position is the most
important factor explaining variation in Hg concentrations in
Southern Ocean seabirds (Becker et al., 2002). Likewise, in tunas
trophic effects (i.e., geographical changes in foraging ecology)
had a limited influence on the spatial variability of tissue Hg
concentrations (Médieu et al., 2022).

Despite generally low trophic positions, dietary differences
exist among the species, especially in the relative importance of
fish. At South Georgia, crustaceans, and particularly Antarctic
krill (Euphausia superba), predominated in Antarctic Prion and
Blue Petrel diets, but fish was considerably more important

for the Blue Petrels (Prince, 1980). In Blue Petrels at Marion
Island (Steele and Klages, 1986), the diet consisted of 60%
crustaceans, 21% myctophid fish and 16% squid by mass. In
Blue Petrels at Kerguelen, however, the contribution of fish
was higher (57%, Cherel et al., 2002b). Compared to King
Penguins (Aptenodytes patagonicus) at Kerguelen which have a
diet consisting of primarily (>90%) myctophids, Blue Petrels at
the same island group have only slightly lower feather Hg values
(Table 1, King Penguins = 2.2 ± 0.5 µg/g; Carravieri et al.,
2013). In comparison, the proportion of fish taken by Thin-billed
Prions and Antarctic Prions is very low both in Kerguelen (Cherel
et al., 2002a) and the Falkland Islands (Quillfeldt et al., 2010 Q19).
The hyperiid amphipod Themisto gaudichaudii was consistently
the dominant prey item for Thin-billed prions. These predatory
pelagic crustaceans may be responsible for the relatively high
trophic position of Thin-billed Prions (Figure 3), but result in
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TABLE 5 | Generalized Additive Model (GAM) results for blood mercury values, separately for the species, as a function of distribution (δ13C, habitat), trophic position
(δ15N), period (early = arrival to incubation vs. late = chick-rearing), and ocean basin (Atlantic, Indian, or Pacific).

Species Variable Smoother edf (P) Effect size Estimate (SE) P

Blue Petrel δ13C 2.99 (P < 0.001) 0.498

(n = 135) δ15N 1.76 (P < 0.001) 0.546

Period 0.373 −2.54 (0.28)
P < 0.001

Ocean 0.002 0.28 (0.53)
P = 0.602

Habitat 0.196 2.76 (0.48)
P < 0.001

Thin-billed Prion δ13C 2.85 (P < 0.001) 0.321

(n = 120) δ15N 4.70 (P < 0.001) 0.356

Period 0.339 −0.50 (0.06)
P < 0.001

Ocean 0.238 0.40 (0.07)
P < 0.001

Habitat 0.238 −0.42 (0.07)
P < 0.001

Antarctic Prion δ13C 1.00 (P = 0.002) 0.344

(n = 26) δ15N 1.33 (P = 0.353) 0.087

Period 0.050 −0.19 (0.16)
P = 0.271

Ocean 0.503 0.32 (0.06)
P < 0.001

Habitat 0.311 −0.20 (0.08)
P = 0.014

Habitat was derived from δ13C following Jaeger et al. (2010), as Subtropical Zone (STZ): δ13C > −20.1h, Subantarctic Zone (SAZ): δ13C values of −22.9 to −20.1h,
and Antarctic Zone (AZ): δ13C < 22.9h. GAM results are reported for separate models for each parameter, and parameters with a statistically significant effect on blood
mercury values are marked bold.

FIGURE 7 | Blood mercury concentrations in Blue Petrels, Thin-billed Prions, and Antarctic Prions, with effects of distribution over the breeding season Q18.

little Hg take-up. At Kerguelen, Hg concentrations were higher
in myctophid fish (up to 0.424 µg/g dw) and, to a lesser extent,
squid (up to 0.270 µg/g dw) compared to crustaceans (up to
0.034 in amphipods, 0.074 in copepods and 0.125 in euphasiids)
(Cipro et al., 2018), and fish in the diet was suggested to be

the most important driver of elevated Hg values in seabirds
(Bocher et al., 2003).

While Blue Petrels are the most piscivorous of the species in
the present study, they also use the most southerly habitats over
the non-breeding season (Quillfeldt et al., 2015; Figure 2). Blue
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FIGURE 8 | Species-specific Generalized Additive Model (GAM) model fits for mercury values in blood of Antarctic Prions, Blue Petrels, and Thin-billed Prions.
Estimated smoothing curves for mercury values in blood in relation to δ13C and δ15N are given with 95% confidence intervals where statistically significant. For GAM
statistics, see Table 5.

Petrels from Kerguelen spent the winter in waters with >10%
sea-ice (Figure 10), and all Blue Petrels spent time in waters
with 30–40% sea-ice before the start of the breeding season in
August–September (Figure 10). Observations off west Antarctica
suggested that Blue Petrels avoided areas with dense pack ice,
but were found just outside the marginal ice zone, at sea surface
temperatures of −0.7 to 0.9◦C (Ryan et al., 2020). Mercury
measurements along a transect from Hobart to the Antarctic
(Cossa et al., 2011; see Figure 2) identified two zones of elevated
dissolved Hg concentrations: in the Southern Zone where it is
caused by processes in the ice-atmosphere-ocean interface like
brine formation, and south of the Antarctic Polar Front (Cossa
et al., 2011). In the Southern Zone, there is further a build-up

of MeHg-enriched surface waters during winter months, when
the sea-ice extent increases and the sea surface is protected
from the UV and, thus, from MeHg photo-reduction (Cossa
et al., 2011). However, the MeHg concentration was highest close
to the Southern Antarctic Circumpolar Current Front, due to
upwelling of waters from the minimum oxygen zone (Cossa et al.,
2011; see Figure 2).

Some Antarctic seabirds have a strong affinity to the sea-ice
environment, in particular Snow Petrels (Pagodroma nivea),
Antarctic Petrels (Thalassoica antarctica), Adélie Penguins
(Pygoscelis adeliae), and Emperor Penguins (Aptenodytes
forsteri). As Procellariiformes (albatrosses, shearwaters, petrels,
and storm-petrels) tend to have higher feather Hg concentrations
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FIGURE 9 | Temporal changes in mercury concentrations in blood of Blue Petrels from different breeding locations over the breeding season.

FIGURE 10 | Year-round percentage of sea-ice concentration (mean ± SD, and smooth lines with 95% confidence intervals) of geolocator tracked Blue Petrels,
Thin-billed Prions, and Antarctic Prions.

than other species owing to their protracted moulting periods
(Braune and Gaskin, 1987; Stewart et al., 1999), their Hg
concentrations are particularly relevant here. However, a
comparison with these species shows no particularly elevated
Hg concentrations. In Snow Petrels from Adélie Land, the blood

Hg concentration averaged 2.7 ± 1.1 (range: 1.0–5.3) µg/g dw
in the pre-laying season (Tartu et al., 2014), lower than the
values in our study for Blue Petrels in the early breeding season
(Figure 9). Likewise, Antarctic Petrels had moderate mean Hg
concentrations in feathers (2.41 ± 0.83 µg/g dw) and blood
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FIGURE 11 | Mercury concentrations in relation to the year-round sea-ice exposure of tracked Blue Petrels, Thin-billed Prions, and Antarctic Prions, shown for blood
samples (A) and body feathers (B). Grey shaded areas show GAM smoothed 95% confidence intervals, obtained in the R package “ggplot2”, across the whole
dataset.

cells (1.38 ± 0.43 µg/g dw; Carravieri et al., 2021). Similarly,
Adélie Penguins and Emperor Penguins from the Ross Sea
had low feather Hg concentrations (0.592 ± 0.015 µg/g and
1.351 ± 0.058 µg/g, respectively; Pilcher et al., 2020). Therefore,
the high values observed for Blue Petrels are unlikely to be
explained directly by foraging in southern waters with up to
40% sea-ice concentration, but might have a connection with
fish that migrate to the surface from the oxygen minimum layer,
and with the elevated MeHg concentration close to the Southern

Antarctic Circumpolar Current Front and, thus, in waters from
the minimum oxygen zone (Cossa et al., 2011; see Figure 2).
Further research should be dedicated to test this hypothesis.

In the Arctic, Ivory Gulls (Pagophila eburnean) have the
highest Hg concentrations in their eggs of any Arctic bird
(Miljeteig et al., 2009; Bond et al., 2015). They consume
ice-associated marine fish and scavenge on marine mammal
carcasses. While the trophic position remained unchanged
between 1877 and 2007 in ivory gulls from Arctic Canada
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TABLE 6 | Generalized Additive Model (GAM) results for tracked individuals,
separately for blood and feathers, as a function of species and sea ice cover.

Tissue Variable Smoother edf (P) Effect size Estimate (SE) P

Blood Species 0.729 4.22 (0.43)
P < 0.001

Sea-ice cover
(max)

2.24 (P < 0.001) 0.395

Feathers Species 0.321 −0.25 (0.35)
P = 0.478

Sea-ice cover
(mean)

3.98 (P = 0.072) 0.209

GAM results are reported for separate models for each parameter, and parameters
with a statistically significant effect on mercury values are marked bold.

and western Greenland (Bond et al., 2015), their feather Hg
concentration increased by a factor of 45 (from 0.09 to 4.11 µg/g).
Due to human activities such as coal and oil combustion,
cement production, waste incineration, mining, smelting, and
other industrial processes, the total and bioavailable amounts
of Hg have dramatically increased in the environment since the
industrial revolution (Pirrone et al., 2010Q20 ; Arctic Monitoring and
Assessment Programme [AMAP], 2019). The concentration of
Hg that causes deleterious effects in birds depends on different
factors, including diet composition, moult duration and the
ability to demethylate Hg in the liver (Heinz et al., 2009), and
has been given as 5–40 µg/g in feathers in general (Burger and
Gochfeld, 1997), or 10–15 µg/g in piscivorous divers (Evers
et al., 2014). All values observed here were below 10 µg/g, but
the highest values in Blue Petrels approached this concentration
(Figure 4), warranting further monitoring in the future.

Temporal Differences in Mercury
Concentrations
We found temporal differences in Hg concentrations in blood
samples, which were most pronounced in Blue Petrels. The
highest concentrations were noted in September, after arrival
from the wintering grounds, indicating that the adults arrived
from Hg contaminated water masses or after feeding on prey with
high Hg levels, but then switched to less contaminated prey. Hg
in blood then decreased continually over the breeding season,
and reached very low levels in birds sampled after returning
to the colony post-moult. This was paralleled by a decline in
trophic position, as indicated by δ15N values. Results of a previous
study showed that mean δ15N values in adult Blue Petrels at
Kerguelen decreased continuously throughout the annual cycle,
from 9.5 ± 1.1h on arrival in the colony in September, to
7.3 ± 0.5h in the immediate post-breeding period in April to
May (Cherel et al., 2014). In the present study, we measured a
similar decrease from means of 10.3 ± 0.8h on arrival in the
colony in September to 7.9 ± 0.4h at the post-nuptial stage in
April (Table 1). The very low levels in April can be directly related
to the Hg reset after Hg depuration in feathers, at a time when
δ15N values are also very low (most likely indicating feeding on
Antarctic krill).

Antarctic Prions did not show a pronounced seasonal trend
in Hg concentrations, but had low values throughout the

breeding season. In both Thin-billed Prion populations and all
years, the blood Hg values were somewhat higher early in the
breeding season. Diet composition of Thin-billed Prions at the
Falkland Islands changes during the breeding season: from 60%
squid and 35% amphipods during incubation to more equal
proportions of amphipods, krill and squid during chick rearing
(Quillfeldt et al., 2010).

Mercury in blood represents two components: Hg
incorporated from the diet during blood formation, and
Hg stored in other tissues, such as the liver, kidney and muscles,
since the last feather moult. Residual Hg in other tissues is
thought to equilibrate with levels in muscle (especially MeHg;
Renedo et al., 2021) and liver, which act as the main storage
organs for Hg between moults (Bearhop et al., 2000b). It has
been shown that a carry-over of Hg can occur from remote
places, such that high exposure in winter may lead to elevated
blood Hg values until late in the summer (Lavoie et al., 2014).
Especially for individuals with high winter exposure to Hg, slow
changes in blood Hg over time were reported, suggesting a fast
uptake rate and slow depuration (Lavoie et al., 2014). Carry-over
of Hg among seasons would also explain the temporal patterns
observed in Blue Petrels in our study.

Spatial Differences in Mercury
In the Blue Petrels, the population of Diego Ramírez most likely
moulted off west Antarctica, i.e., in the Pacific Ocean sector of the
Southern Ocean, from 67 to 71◦S and 78 to 119◦W (Ryan et al.,
2020). Ryan et al. (2020) observed large numbers of moulting
Blue Petrels sitting on the water in dense flocks in mid-February,
which is in line with the 10.7 ± 2.5 h per day spent sitting on
the water by Blue Petrels from Kerguelen during moult (Cherel
et al., 2016). Ryan et al. (2020) suggested that most of the birds
observed in west Antarctica probably breed at Diego Ramírez,
and this is also suggested by a comparison with distribution
data of Blue Petrels from other colonies. Blue Petrels from both
Kerguelen and South Georgia were found in the Atlantic sector
of the Southern Ocean (20◦W to 30◦E) in March, during the
core moulting period, and thus far away from the moulting
aggregations observed off west Antarctica (Ryan et al., 2020).

Latitudinal differences in distribution influence Hg exposure,
with lower Hg in Antarctic waters compared to subantarctic
waters, a trend reported in previous studies (e.g., Carravieri
et al., 2014, 2016, 2017, 2020 Q21; Cherel et al., 2018). We found no
further increase towards subtropical waters. The trophic position
also increased from polar to subantarctic waters, but continued
to increase to subtropical waters. Thus, differences in trophic
position would not fully explain the observed patterns. Indeed,
a more detailed analysis revealed that not all populations show an
increase in blood Hg concentrations associated with δ13C values.
Differences in prey as well as carry-over effects of Hg may mask
spatial differences.

Further spatial differences in Hg values were observed when
comparing populations from different ocean sectors. Values were
lowest in the Atlantic Ocean, intermediate in the Indian Ocean,
and highest in the Pacific Ocean, although this was only based
on one population. That population, Blue Petrels from Diego
Ramírez, had high feather Hg concentrations (4.42 ± 2.72 µg/g
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dw), comparable with Blue Petrels on Marion Island, Indian
Ocean (4.62 ± 4.11 µg/g dw, Supplementary Table 2). Tracking
and dietary data are still lacking from both populations.

A difference in Hg has also been observed for other organisms
such as Marbled Rockcod (Notothenia rossii), where mean muscle
Hg concentrations of fish in waters around Kerguelen (0.255 µg/g
dw; Bustamante et al., 2003) were three times higher than in the
South Shetland Islands in the Atlantic sector of the Southern
Ocean (0.077 µg/g dw; Cipro et al., 2017). Such differences may
be due to differences in Hg sources and oceanographic features.

CONCLUSION

In line with previous studies, we found high Hg concentrations
in Blue Petrels. As a novel result, we further found important
population differences. We highlight that Blue Petrels did not
have a northerly distribution or high trophic position, which
usually account for elevated Hg concentrations in Southern
Ocean seabirds. Instead, they have the most southern winter
distribution of our three study species, and feed mainly
on crustaceans, except on Kerguelen where myctophid fish
constitute a substantial proportion of the diet. As other seabirds
exposed to high Hg levels in winter, they have a notable temporal
carry-over of high blood Hg values into the breeding season.

While the Kerguelen population of Blue Petrels has been
tracked recently (e.g., Quillfeldt et al., 2015, 2020; Cherel
et al., 2016), there are no diet or tracking data from the
major population at Diego Ramírez. Our study suggests that
this population has particularly high exposure to Hg (e.g.,
Figure 3 and Supplementary Figure 8), which can be an
additional stressor and impact reproduction and survival in
birds (Goutte et al., 2014; Mills et al., 2020). Further study of
their movements and foraging ecology are therefore required, in
particular to confirm if the high Hg concentrations in feathers are
related to differences in diet or sea-ice exposure. Additionally, a
comparison of Hg in flight feathers, and of spatial and temporal
variation in Hg concentrations of their crustacean and fish prey
in relation to biogeography and ecology would help reveal the
factors driving differences among seabird species in terms of Hg
exposure and contamination. A combination of ship-based and
tracking studies could address the question of how the foraging
and movement ecology of predators and spatial differences
interact to produce the patterns in Hg burdens observed in these
and other wildlife in the Southern Ocean.
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